

Systems Engineering framework and learning lines The case study of the systems architect

4th Feb 2025

Who are we

Pascal Etman

- MSc, PhD in Mechanical Engineering
- Research in systems modeling, design and optimization
- Associate professor at TU/e CST group
- Contact at: l.f.p.etman@tue.nl

Sapfo Tsoutsou

- MSc in Mechanical Engineering
- EngD in Automotive Systems Design
- Engineering industry experience of 8 years
- Program manager Systems Engineering at TU/e, CST
- Contact at: s.tsoutsou@tue.nl

- Introduction to NextGen Systems Engineering project
- Systems Engineering Roles
- Job Functions vacancy analysis
- Design process of the SE development line (with example)
- Assignment regarding Systems Architect competencies

Introduction to NextGen Systems Engineering

Goal

Strengthening the innovative power of the hightech equipment industry in the Netherlands by increasing the quality and supply of Systems Engineers, in a way that appeals to the international imagination.

How

By designing, developing and realizing:

- The Dutch Approach of Systems Engineering (DASE Framework)
- A Continuous Development Line on Systems Engineering

Definition of SE roles

Customer Interface Coordinates with the customer

Concept Creator

Holistically explores the problem or opportunity space and develops the overarching vision for a system(s) that can address this space.

Requirements Owner

Translating customer requirements to system or subsystem requirements

System Designer / System Architect / Chief Engineer

Designing the architectures of the system (functional, physical) Detailed Designer

Provides technical designs that match the system architecture; for any part of the design for the overall system.

5/16 NXTGEN HIGHTECH

Support Engineer / Logistics -Ops Engineer

Performs the 'back end' of the systems lifecycle, who may operate the system, provide support during operation, provide guidance on maintenance, or help with disposal.

Validation/ Verification Eng.

Verification and validation activities such as testing, demonstration, and simulation.

System Integrator

The 'technical conscience' or 'seeker of issues that fall in the cracks' – particularly, someone who is concerned with interfaces.

System Analyst / performance modeler

Modeling or analysis support to system development activities, ensuring that the system as designed meets he specification.

Program/Project Manager

Works closely with technical experts and other systems engineers while maintaining overall project cost and schedule.

Organizational/ Functional Manager

Personnel management of systems engineers or other technical personnel in a business setting.

Coordinator

Brings together and to agreement a broad set of individuals or groups who help to resolve systems related issues.

Process Engineer

Defines and maintains the systems engineering processes

Information Manager

Responsible for the flow of information during system development activities.

Technical Manager

Controls cost, schedule, and resources for the technical aspects of a system.

Instructor/Teacher

Provides or oversees critical instruction on the systems engineering discipline, practices, processes, etc.

Systems Engineering Champion

Promotes the value of systems engineering outside of the SE community

Based on: S. Sheard "Twelve Systems Engineering Roles" and INCOSE International "The Roles of Systems Engineers Revisited"

Engineer - 38 vacancies

Design process of the SE development line

INCOSE competencies

Core competencies: Covers core principles which underpin engineering as well as systems engineering.

> Systems Thinking Lifecycles Capability Engineering General Engineering Critical Thinking Systems Modelling and Analysis

Professional Competencies: Covers behavioral competencies which are all well established within the Human Resources (HR) domain.

Communications

Ethics and Professionalism

Technical Leadership

Negotiation

Team Dynamics

Facilitation

Emotional Intelligence

Coaching and Mentoring

Management

competencies: Covers the competencies needed to perform tasks associated with controlling and managing systems engineering work.

Planning Monitoring and Control Decision Management Concurrent Engineering Business and Enterprise Integration Acquisition and Supply Information Management Configuration Management Risk and Opportunity Mng Technical competencies: Covers the competencies needed to perform a series of tasks associated with the Technical Processes identified in the INCOSE SE Handbook 4th Edition.

Requirements Definition System Architecting Design for... Integration Interfaces Verification Validation Transition Operation and Support

Integrating competencies: Covers the systems engineering competencies required to understand and integrate the viewpoints and perspectives of others into the overall picture.

Project Management Finance Logistics Quality

DASE compass

Value statement and plan by enterprise about the systemof-interest developed in the project.

Network of people developing, producing, and supporting the Sol, using a structure and culture.

Workflows of general and technical SE activities, and their interactions, to carry out the project.

> Methods and procedures to design, realize, use, retire Sol given time, quality, and cost budget.

out Project

Carl

System to be created, in terms of its design definitions and physical realizations.

Document, digital and physical reference sources to derive Sol architecture from.

Design process of the SE development line

System Designer/ SA / Chief Engineer Role

Key Responsibilities

- Develops high-level system architecture and design
- Evaluates and selects major components
- Analyzes building options against requirements
- Defines detailed specifications for subsystems
- Focuses on integration and verification
- Works closely with Requirements Owner
- Emphasizes architecture over low-level development

System Designer/ SA / Chief Engineer Role

SE Competency levels and career stages

- Awareness (level 1): able to explain (Bloom: remember understand)
- Super-vised practitioner (level 2): able to assist (Bloom: understand apply)
- Practitioner (level 3): able to practice (Bloom: apply analyse)
- Lead practitioner (level 4): able to influence (Bloom: evaluate)
- **Expert** (level 5): able to provide vision (Bloom: create)

Junior	Medior	Senior
1 – 5 years of SE	6 – 15 years of SE	15+years of SE
experience	experience	experience

COMPETENCY AREA - PROFESSIONAL: TECHNICAL LEADERSHIP

Description:

Systems Engineering technical leadership is the combination of the application of technical knowledge and experience in Systems Engineering with appropriate professional competencies. This encompasses an understanding of customer need, problem solving, creativity and innovation skills, communications, team building, relationship management, operational oversight and accountability skills coupled with core Systems Engineering competency and engineering instinct.

Why it matters:

14/1

The complexity of modern system designs, the severity of their constraints and the need to succeed in a high tempo, high-stakes environment where competitive advantage matters, demands the highest levels of technical excellence and integrity throughout the lifecycle. Systems Engineering technical leadership helps teams meet these challenges.

EFFECTIVE INDICATORS OF KNOWLEDGE AND EXPERIENCE

AWARENESS	SUPERVISED PRACTITIONER	PRACTITIONER	LEAD PRACTITIONER	EXPERT		
Explains the role of technical leadership within Systems Engineering.	Performs Systems Engineering activities with integrity, earning trust from others by applying both professional and	Leads Systems Engineering activities on their team with integrity, earning trust from others.	Recognized, within the enterprise, as a leader in Systems Engineering, contributing to best practice.	Recognized, beyond the enterprise boundary, as a leader in Systems Engineering,		
Defines "vision", "strategy" and "goal" terms and why each is important in leadership.	technical competencies successfully. States the vision and describes how it impacts both the project and the wider	Leads Systems Engineering activities on the team, combining appropriate competencies, with demonstrable success.	Leads Systems Engineering activities across the enterprise with integrity, earning trust from others.	Contributes to best practice in leadership in Systems Engineering.		
Explains why understanding the strategy is central to Systems Engineering leadership.	enterprise. States team and project goals and works towards these, thinking strategically,	Interprets vision for project team, influencing and integrating their viewpoints to gain acceptance.	Leads Systems Engineering activities across the enterprise, combining professional and technical competencies, with demonstrable success.	Influences key Systems Engineering stakeholders in leadership issues beyond the enterprise boundary with integrity, earning trust from others.		
Explains why fostering collaboration is central to Systems Engineering.	holistically and systemically when performing own tasks.	Strives for project goals, changing strategies as necessary, to ensure success.	Accepts criticism with professional demeanor using it to self-improve, whilst	Leads Systems Engineering activities beyond the enterprise, combining appropriate professional competencies with		
Explains why the art of communications is central to Systems Engineering.	Accepts constructive criticism and uses this to self-improve, whilst remaining willing to challenge or offer constructive	Accepts constructive criticism and uses this to self-improve, whilst remaining willing to challenge or offer constructive criticism to others.	remaining open to challenging or offer constructive criticism to others within and beyond the enterprise.	technical knowledge and experience. Leads activities collaboratively beyond the enterprise boundary, establishing mutual		
Explains why fostering collaboration is central to Systems Engineering leadership and how poor collaboration impacts on the quality of leadership	criticism to others on the team. Listens to viewpoints from others and takes these into account when	Leads Systems Engineering activities collaboratively.	Fosters collaboration between stakeholders across the enterprise, sharing ideas and knowledge and establishing mutual trust.	trust. Enables and empowers others beyond the enterprise boundary to be successful.		
provided.	developing solutions.	Enables and empowers team members to be successful, by supporting, facilitating, promoting, giving ownership and supporting	Enables and empowers others within the enterprise to be successful.	Advises in complex or sensitive problem or issue resolution, applying creativity and		
Describes technical analysis and problem techniques and established best practices which can be used	Communicates ideas clearly and effectively to peers, selecting techniques and technical vocabulary.	them in their endeavors. Communicates ideas clearly and effectively	Applies creativity, innovation and problem solving techniques to develop strategies or resolve complex project or enterprise issues.	innovation to ensure successful delivery. Fully utilizes their extended network and		
improve the excellence of Systems Engineering solutions.	Applies creativity, innovation and problem solving techniques in own work.	to team, using appropriate techniques and technical vocabulary.	Maintains current technical expertise, through studying new and emerging best	influencing skills to gain collaborative agreement with key stakeholders to progress project or enterprise needs.		
Explains how creativity, ingenuity, experimentation and accidents or errors, often lead to technological and	Identifies concepts and ideas in sciences, technologies and engineering	Applies creativity, innovation and problem solving techniques to develop strategies or resolve team or project issues.	practice in own discipline and in sciences, technologies and engineering disciplines beyond their own.	Champions the introduction of novel techniques and ideas in leadership, producing measurable improvements		

Individual Assignment (15 minutes)

• Fill in the list for the role of System Architect

	Junior (1-5y SE experience)	Medior (6-15y SE experience)	Senior (15+y SE experience)
Technical Leadership	2	3	4
 Negotiation 			
Team Dynamics			
 Coaching and Mentoring 			
 Systems Thinking 			
 General Engineering 			
 Critical Thinking 			
 Systems Modelling and Analysi 	S		
 System Architecting 			
 Operation and Support 			
 Decision Management 			
 Design for 			
•			<u> </u>

1: awareness, 2: supervised practitioner, 3: practitioner, 4: lead practitioner, 5: expert

REAL BANK HIGHTECH

Tot ziens!

Discussion item

What characterizes your company regarding Systems Engineering? You can use the compass as a reference

